Vol. 43 (6): 1110-1114, November – December, 2017
doi: 10.1590/S1677-5538.IBJU.2016.0630
ORIGINAL ARTICLE
Ilker Seckiner 1, Serap Seckiner 2, Haluk Sen 1, Omer Bayrak 1, Kazım Dogan 1, Sakip Erturhan 1
1 Department of Urology, Gaziantep University, Gaziantep, Turkey; 2 Department of Endustrial Engineering, Gaziantep University, Gaziantep, Turkey
ABSTRACT
Objective: The prototype artificial neural network (ANN) model was developed using data from patients with renal stone, in order to predict stone-free status and to help in planning treatment with Extracorporeal Shock Wave Lithotripsy (ESWL) for kidney stones.
Materials and Methods: Data were collected from the 203 patients including gender, single or multiple nature of the stone, location of the stone, infundibulopelvic angle primary or secondary nature of the stone, status of hydronephrosis, stone size after ESWL, age, size, skin to stone distance, stone density and creatinine, for eleven variables.
Regression analysis and the ANN method were applied to predict treatment success using the same series of data.
Results: Subsequently, patients were divided into three groups by neural network software, in order to implement the ANN: training group (n=139), validation group (n=32), and the test group (n=32). ANN analysis demonstrated that the prediction accuracy of the stone-free rate was 99.25% in the training group, 85.48% in the validation group, and 88.70% in the test group.
Conclusions: Successful results were obtained to predict the stone-free rate, with the help of the ANN model designed by using a series of data collected from real patients in whom ESWL was implemented to help in planning treatment for kidney stones.
Keywords: Calculi; Lithotripsy; therapy [Subheading]